Magnitude homology of geodesic metric spaces with an upper curvature bound

نویسندگان

چکیده

In this article, we study the magnitude homology of geodesic metric spaces curvature $\leq \kappa$, especially ${\rm CAT}(\kappa)$ spaces. We will show that $MH^{l}_{n}(X)$ such a meric space $X$ vanishes for small $l$ and all $n > 0$. Conseqently, can compute total $\mathbb{Z}$-degree shperes $\mathbb{S}^{n}$, Euclid $\mathbb{E}^{n}$, hyperbolic $\mathbb{H}^{n}$, real projective $\mathbb{RP}^{n}$ with standard metric. also an existence closed in guarantees non-triviality homology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convexity and Geodesic Metric Spaces

In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...

متن کامل

An Upper Bound for the Curvature Integral

It is shown that the integral of the scalar curvature of a closed Riemannian manifold can be bounded from above in terms of the manifold’s dimension, diameter, and a lower bound for the sectional curvature. §

متن کامل

An upper bound for curvature integral

Here I show that the integral of scalar curvature of a closed Riemannian manifold can be bounded from above in terms of its dimension, diameter, and a lower bound for sectional curvature.

متن کامل

Ricci curvature of metric spaces

We define a notion of Ricci curvature in metric spaces equipped with a measure or a random walk. For this we use a local contraction coefficient of the random walk acting on the space of probability measures equipped with a transportation distance. This notions allows to generalize several classical theorems associated with positive Ricci curvature, such as a spectral gap bound (Lichnerowicz th...

متن کامل

Geodesic metric spaces and generalized nonexpansive multivalued mappings

In this paper, we present some common fixed point theorems for two generalized nonexpansive multivalued mappings in CAT(0) spaces as well as in UCED Banach spaces. Moreover, we prove the existence of fixed points for generalized nonexpansive multivalued mappings in complete geodesic metric spaces with convex metric for which the asymptotic center of a bounded sequence in a bounded closed convex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2021

ISSN: ['1472-2739', '1472-2747']

DOI: https://doi.org/10.2140/agt.2021.21.647